Photochemistry of Enethiol Esters

By John R. Grunwell

(Department of Chemistry, Miami University, Oxford, Ohio 45056)

Summary Enethiol esters are photolysed in cyclohexane to give enethio-radicals which dimerize to either the disulphide or the thiophen.

PREVIOUS studies^{1,2} have implicated the involvement of 3d-orbitals in the molecular orbitals of aromatic enethiol esters. The object of this research is to establish what influence 3d-orbitals have on the photochemistry of enethiol esters.

The photolysis of p-tolyl thiolacetate (I) (0.5-1.0%)

† Rayonet photochemical reactor.

solution in cyclohexane, 254 nm. light[†]) gave the disulphide (II) (77%) and the sulphide (III) (7%). Also, cyclohexen-l-yl thiolacetate under the same conditions gave the thiophen (IV) (15%) and *cis*- and *trans*-2-acetylcyclohexylthiolacetate (5% and 2%).

The sulphur-acyl bond of the excited enethiol ester cleaves homolytically to give the enethio-radical, which dimerizes at sulphur when the ester is aromatic (Scheme 1). This behaviour is consistent with the fact that the spin density of aryl thio-radicals is localized largely on sulphur.³ It is not possible to distinguish between dimerization at carbon or at sulphur in the case of the cyclohexene-1-thioradical (Scheme 2). In a related reaction, potassium

cyclohexenyl-1-thiolate and N-bromosuccinimide give octahydrodibenzothiophen.4 The postulated rearrangement of dicyclohexenyl 1,1-disulphide is being checked.

No photo-Fries products are found (Scheme 1). The probability of the acetyl radical coupling with the carbon atom of the enethio-radical is small because of the low spin density on the carbon atoms of the enethio-radical. Recently, the photo-Fries rearrangement for enol esters has

been shown to be an intramolecular [1,3]-sigmatropic change of order.⁵ This mechanism demands the sulphuracyl bond be perpendicular to the plane of the benzene ring.

However, $3d^2p$ hybrid orbitals of sulphur would cause coplanarity of the benzene ring and the thioacetoxy-group and prevent an intimate contact photo-Fries rearrangement. Another consequence of $3d^2p_{\pi}-2p_{\pi}$ overlap in enethiol esters should be significant charge separation in the excited state.² The small red shift⁶ in the u.v. maximum of a series of para-substituted phenyl thiolacetates with increasing solvent polarity tends to argue against $3d^2p_{\pi}-2p_{\pi}$ bonding.

An alternative explanation for the lack of photo-Fries rearrangement is the poor overlap between the σ -sulphuracyl bond and the 2p orbitals of the benzene ring. Sulphurcarbon σ -bonds are significantly longer than oxygen-carbon σ -bonds.⁷

(Received, September 29th, 1969; Com. 1463.)

- ¹G. Cilento, Chem. Rev., 1960, 60, 147.
- ¹ G. Chento, *Chem. Rev.*, 1960, 60, 147.
 ² V. Baliah and R. Ganapathy, *J. Indian Chem. Soc.*, 1963, 40, 1.
 ³ U. Schmidt, "Organosulfur Chemistry," ed. M. J. Janssen, Interscience, New York, 1967, ch. 5, p. 86.
 ⁴ J. Morgenstern and R. Mayer, *J. prakt. Chem.*, 1966, 34, 116.
 ⁵ R. Sandner, E. Hedaya, and D. J. Trecker, *J. Amer. Chem. Soc.*, 1968, 90, 7249.
 ⁶ S. I. Hanhan and J. R.Grunwell, unpublished results.
 ⁷ L. F. Fieser and M. Fieser, "Advanced Organic Chemistry," Reinhold, New York, 1961, p. 1156.